Regulation of Protein Synthesis by the Epitranscriptome

Daniel Arango, Ph.D.

Assistant Professor

Department of Pharmacology

https://sites.northwestern.edu/arangolab/

M Northwestern Medicine®

Feinberg School of Medicine

Nucleotide modifications: a regulatory layer of gene expression

• Modified Nucleotide : chemical modifications of canonical A, C, T/U, G

RNA Modifications: sheer numbers and diversity

> 150 ribonucleoside modifications

For most modifications, function is unknown

RNA Modifications: sheer numbers and diversity

key in the development of mRNA vaccines

N4-acetylcytidine:

catalyzed by the disease-associated enzyme NAT10

Hutchinson-Gilford progeria syndrome (HGPS)

Sole eukaryotic RNA acetyltransferase

Scaffidi *et al.*, Plos Biol, 2005 Larrieu et al., Science 2014

Uncovering the distribution of RNA acetylation

Zachau et al. 1966 Angew Chem Int Ed Thomas et al. 1978 JBC Sharma et al. 2015 NAR

> *Tsai* et al. 2020 Cell Host Microbe *Feng* et al. 2022 J Hematol Oncol

Developing methods to decipher the epitranscriptome: the case of ac⁴C

Arango et al., Cell, 2018 Arango et al., Bio-Protocols, 2019

Arango et al., Mol Cell, 2022 Sturgill et al., STAR Protocols, 2022

Developing methods to decipher the epitranscriptome: the case of ac⁴C

Uncovering the function of RNA modifications: the case of ac⁴C

Is the position within transcripts a determinant of function?

Time (min)

5'UTR and CDS acetylation mediate distinct roles in translation

CDS acetylation promotes translation efficiency

ac4C associated change in TE

ac4C promotes codon recognition in bacteria

*Methionine insertion at Isoleucine-encoding site.

Stern and Schulman, JBC, 1978

Efficiency of codon recognition promotes mRNA stability and translation

RNA modifications increase or decrease the strength of the codon:anticodon recognition

ac4C Promotes Translation of Transcripts with Low Codon Optimality

Synonymous Mutations C > A, G, U (change codon optimality)

Codon Optimality Translational Efficiency

Arango et al., Cell, 2018 In Collaboration with Jeff Coller. Johns Hopkins

Examining the role of 5'UTR ac4C role in translation initiation

Regulation of translation initiation

aTIS: annotated translation initiation site upTIS: upstream translation initiation site ORF: Open reading frame = CDS uORF: upstream open reading reading

ac4C influences translation initiation in a position specific-manner

Direct influence of ac4C on translation initiation?

Kozak optimality is defined by the Interactions within the pre-initiation complex

Adapted from Simonetti et al. 2020 Cell Reports

ac4C impairs the intermolecular interactions of the initiation complex

RNA acetylation modulates protein synthesis in a position-specific manner

Strengthens canonical interactions

Weakens non-canonical interactions

Why Does Modulating Protein Synthesis Matter?

Translation regulation is a determinant of cancer plasticity

- When is mRNA acetylation happening?
- How is NAT10 promoting cell proliferation and cancer growth?

RNA acetylation is associated with cell proliferation and stress response

NAT10 is overexpressed in cancers

Western blot

Western blot

NAT10 expression is induced in response to chemotherapy drugs

MOLM13 Cells

K562 Cells

Unpublished. Please do not post

NAT10 is a vulnerability in AML

Survival curves of NPM1c PDX mice

PDX samples

In collaboration with Kostas Tzelepis. University of Cambridge

Unpublished. Please do not post

Investigating the oncogenic mechanisms of NAT10

Generating PROTAC degraders for controlled depletion of NAT10

Sweta Raikundalia,

Ph.D.

NAT10 promotes leukemia cells proliferation

No induction of cell death

Unpublished. Please do not post

Investigating the oncogenic mechanisms of NAT10

Investigating the oncogenic mechanisms of NAT10

Cytoplasmic NAT10 is associated with poor prognosis in cancer

Tan et al., 2018 Biochem Biophys Res Comm

Cytoplasmic NAT10 correlates with mRNA acetylation

Subcellular Fractionation

mRNA acetylation + ++ + -

Cytoplasmic NAT10 is observed in cancer cells treated with chemotherapeutic drugs

Working Model

Acknowledgements

M Northwestern Medicine[®] Feinberg School of Medicine

Lab members

Sweta Raikundalia. Postdoc Mahmood Dalhat Postdoc Kevin Vasquez, Graduate Student Sharath Narayan, Graduate Student Emmely Patrasso, Visiting Scholar Adam Suh, Undergrad Student

Collaborators

Kostas Tzelepis, University of Cambridge Masaki Hosogane, Tohoku University Pablo Penaloza-MacMaster, Northwestern University Grant Barish, Northwestern University

Former Mentors

Shalini Oberdoerffer, National Cancer Institute Andrea Doseff, The Ohio State University Mauricio Camargo, Universidad de Antioquia

