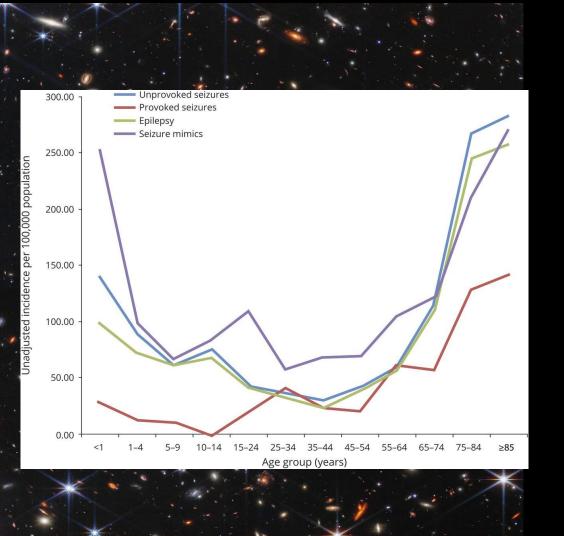
MMn future MMN neuro

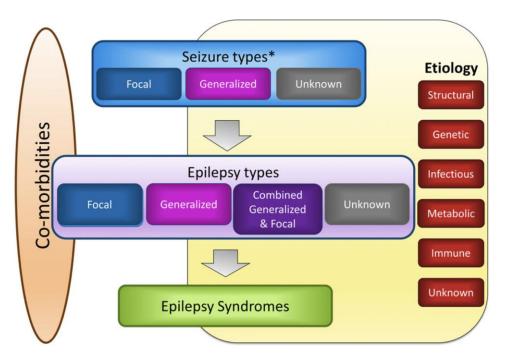
Genetics as a guide for therapeutics in the epilepsies

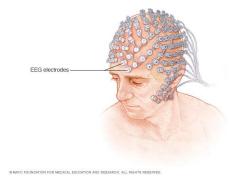
Gianpiero Cavalleri



• I am in receipt of research funding from Congenica & Janssen Pharmaceuticals

- 1. What are the epilepsies..? (causes, types, genetics of)
- 2. Clinical indications for genomic diagnostic testing...and associated yield
- 3. Some examples of precision medicine in the epilepsies
- 4. Latest (germline) gene discovery efforts
- 5. Application of PRS to the epilepsies

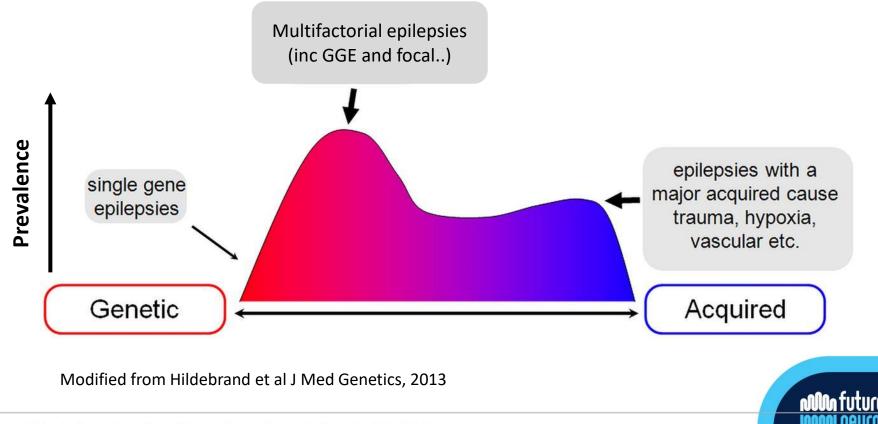



The epilepsies..

..... are characterised by recurrent unprovoked seizures......affect all age groupsoften of unknown cause......

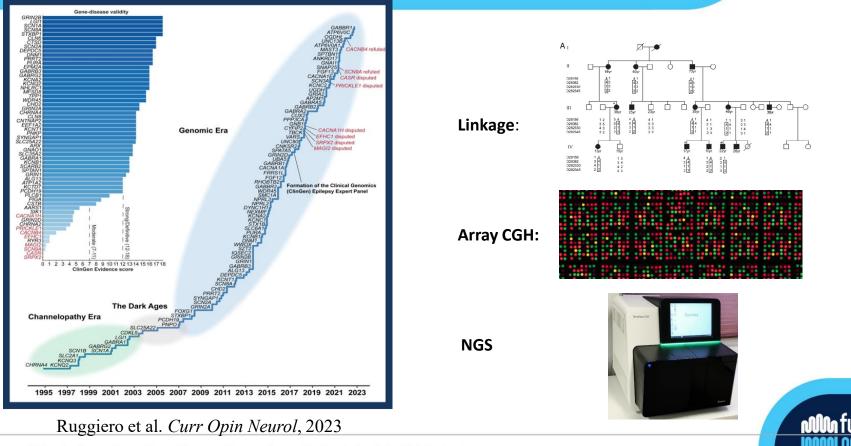
may have significant consequences in terms of adverse educational, ... psychosocial functioning, and physical morbidity (and potential mortality), especially in the one third of patients with drug-resistant disease.

Classification and causes of epilepsy



- Focal epilepsies (FE)
- Generalised epilepsies (GGE)
- Developmental and epileptic encephalopathies (DEE)

Scheffer et al Epilepsia 2017


The epilepsies have a spectrum of genetic architectures..

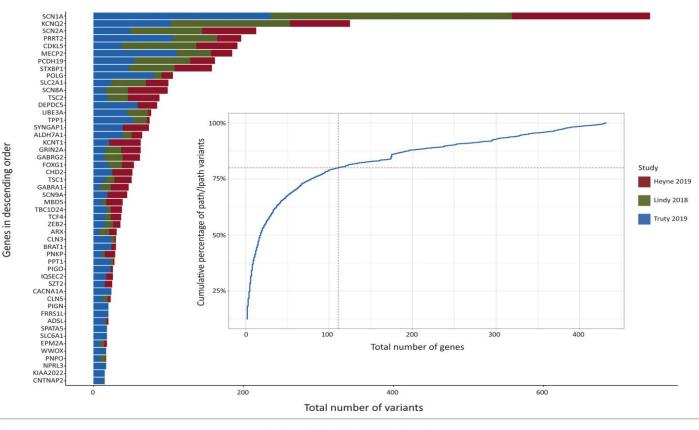
Clinical indications for genomic diagnostic testing..

A brief history of gene discovery in the epilepsies

Clinical indications for diagnostic genetic testing in the epilepsies.

- From clinical experience & gene discovery:
 - Strong family history
 - Neonatal or infantile seizures
 - Developmental and epileptic encephalopathies
 - Epilepsy plus other neurodevelopmental comorbidities
- Recent systematic review:

"strongly recommend that individuals with unexplained epilepsy be offered genetic testing, without limitation of age".. Smith et al, 2022 J Genetic Couns


Epilepsia

Grouping	Subgroup	No. of incl. cohorts	No. of incl. individuals	Diagnostic yield (95% CI)
Overall		103	32 310	23.7% (22%-26%)
By disorder	ASD	14	1530	17.1% (11%–25%)
	Epilepsy	72	27 923	24.0% (22%-27%)
	ID	21	2863	28.2% (22%-35%)
By seizure type	FE	15	1944	15.8% (10%-24%)
	GE	7	1258	24.3% (18%-32%)
	GE & FE	59	26 888	24.8% (22%-28%)
By disorder subtype	Epilepsy without ID	8	1224	9.3% (4%–23%)
	ASD with ID or DD	7	591	24.6% (18%-32%)
	Epilepsy with ID	15	1290	27.9% (24%-33%)
By other DEEs	WS	16	768	19.3% (14%-26%)
	Other DEEs	8	232	38.8% (23%-57%)
By age of onset	Any Age	5	1080	6.6% (2%-22%)
	Childhood	3	171	14.7% (4–42%)
	Neonatal/ Infantile	13	986	29.3% (23%–36%)
By sequencing	Panel	73	28 665	22.6% (20%-25%)
technology	ES	36	3720	27.3% (24%-31%)

Table from Stefanski et al 2021 *Epilepsia*:

Epilepsy genes.. by yield.. From >25,000 individuals

NUM future MMV neuro

Molec Knowles et al. *Epilepsia*, 2022 bled by electronic health infrastructure.

Some examples of precision medicine in the epilepsies...

Precision or Targeted Therapies in Genetic Epilepsies

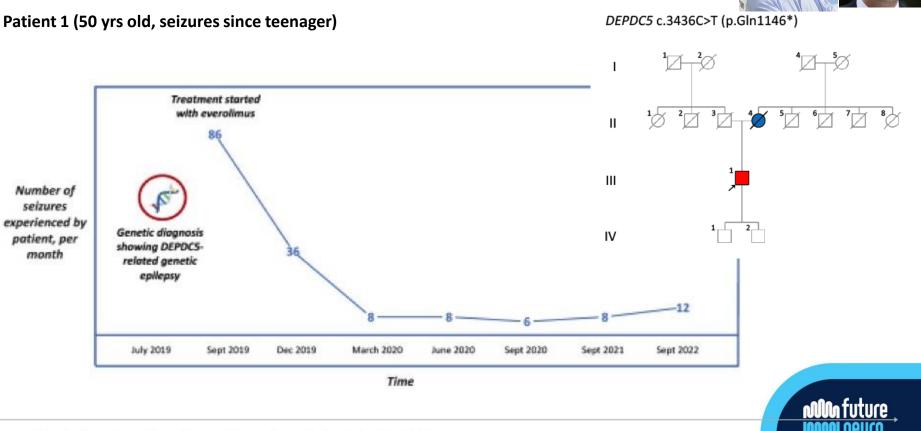
- Epilepsia Open® **FULL-LENGTH ORIGINAL RESEARCH** pen Access TSC. DEPDC5, NPRL2/3 Everolimus, cann Possible precision medicine implications from genetic testing SCN1A e, L-serine, dextromethorphan Loss-of-function: using combined detection of sequence and intragenic copy sodium channel k number variants in a large cohort with childhood epilepsy Gain-of-function: Neurology trial) SCN2A Rebecca Truty¹ | Nila Patil² | Raman Sankar² | Joseph Sullivan³ | John Millichap⁴ Gain-of-function:), levetiracetam Gemma Carvill⁵ | Ali Entezam¹ | Edward D. Esplin¹ | Amy Fuller¹ | Michelle Hogue¹ Loss-of-function: Britt Johnson¹ | Amirah Khouzam¹ | Yuya Kobayashi¹ | Rachel Lewis¹ | SCN8A vridoxine Keith Nykamp¹ | Darlene Riethmaier¹ | Jody Westbrook¹ | Michelle Zeman¹ | Gain-of-function: riluzole Robert L. Nussbaum^{1,6} | Swaroop Aradhya¹ SLC2A1 (GLUT1 def) .." the testing had possible precision medicine implications in 33% Ketogenic diet of individuals who received definitive diagnostic results" KCNQ2 Loss-of-function: retigabine, sodium channel blocker CHRNA2, CHRNA4, CHRNB2 • Gain-of-function: amitriptyline ٠ Transdermal nicotine PRRT2 KCN2A .
 - Carbamazepine (drug of choice)

٠

٠

4-aminopyridine (fampridine)

Everolimus: a therapy for the GATOR1-related epilepsies? a case series/open label observational study

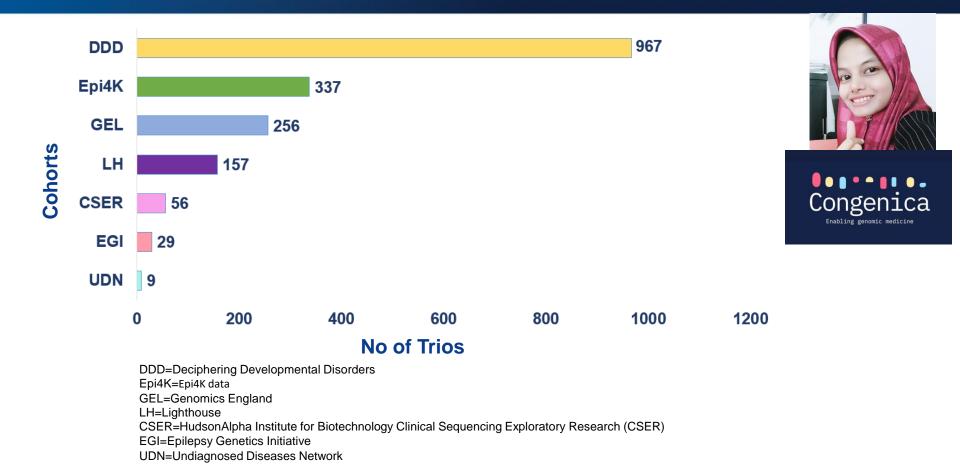


IIEUI

	Patient 1	Patient 2	Patient 3	Patient 4	Attent to Design
Epilepsy type	Sleep-related hypermotor epilepsy	Sleep-related hypermotor epilepsy	Frontal lobe epilepsy	Sleep-related hypermotor epilepsy	i emporai iope epilepsy
Duration of treatment	31 months	12 months	12 months	7 months	27 months
Everolimus dose at last review	15mg	10mg	10mg	12.5mg	15mg
Everolimus level at last review	3.2ng/mL	5.1ng/mL	8.9ng/mL	4.2ng/mL	6.2ng/mL
Baseline MMSF	86	11	7.66	49.66	18.33
MMSF at 3 months on treatment	36	4.33	2.66	51.33	16.66
MMSF at 6 months on treatment	21.66	3.66	1.5	61.5	11.83
MMSF at 12 months on treatment	14.58	2.83	1.08	-	11.91
MMSF at 18 months on treatment	11.94	-	-	-	9.94
MMSF at last review on treatment	12.03	2.83	1.08	62.57	10.29
Monthly seizure burden C	86.1%	74.3%	85.9%	No reduction (26% increase in seizure burden)	43.9%
Treatment- emergent adverse events	Stomatitis (mild)	Stomatitis (moderate), low mood and insomnia (moderate)	Stomatitis (mild), acneiform rash (mild)	Stomatitis (severe)	High cholesterol and triglycerides
Everolimus retention	Yes	No (stopped after 12 months due to adverse events)	Yes	No (stopped after 7 months due to lack of efficacy)	Yes
Variant type	Stopgain	Frameshift deletion	Deletion	Splicing	Missense

Maloney et al, under revision, EJN anabled by electronic health infrastructure.

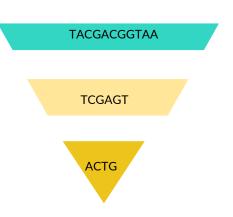
Example of treatment response..


Pharmacogenomics in epilepsy.

Drug	Gene	Allele	Effect	ancestry	Clinical status?
Carbamazepine	HLA-B	*15:02	SJS/TEN	Han/SE Asian	FDA recommended
Phenytoin	HLA-B	*15:02	SJS/TEN	Han/SE Asian	FDA warning
Oxcarbazepine	HLA-B	*15:02	SJS/TEN	Han/SE Asian	FDA warning
Carbamazepine	HLA-A	*3101	SJS/TEN, MPE, and DRESS	European, Japanese, Korean	FDA warning
Carbamazepine	HLA-B	*57:01	SJS/TEN	EU	More data required
Phenytoin	CYP2C9	*3	SJS/TEN/DRESS	Han, Thai, European	(FDA warning)
Aromatic AEDs	IKZF1	rs4917014	SCAR	European	More data required
Carbamazepine	ALK	rs187926838	SCAR	European	More data required
Phenytoin	CFHR	rs78238784	MPE	European	More data required
Levetiracetam	PRS	various	psychosis	European	More data required

Latest (germline) gene discovery efforts

New gene discovery effort for DEE/epilepsy + ID


De novo variants were processed and filtered

ACTG CAGTTCGATCCAGTCGTACGTAGTCGACTAGTACGAGCG

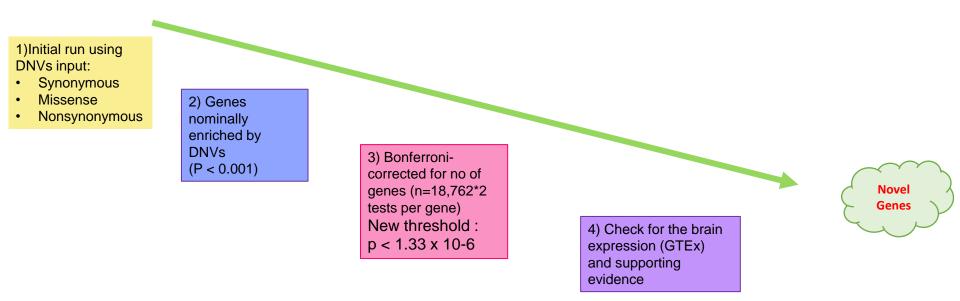
ACTGTTCGATCCCGTACGTAGGAAAGCTTAGCTCGC

TGTTCGCCGTAGGAATTGCTCGGA

Input variants (bioinformatics pipeline)

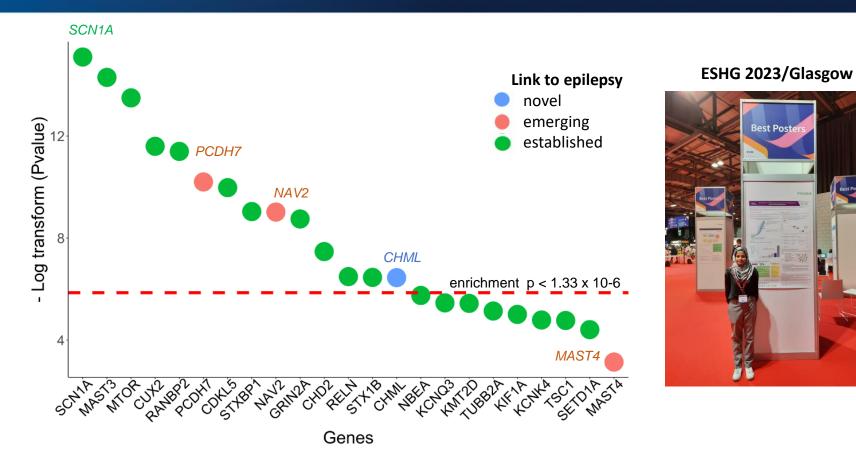
Filter 1: Include those that are seen in the child for the first time

Filter 2: Include those that are not seen/ultra rare in "normal" control groups (GnomAD Non-Neuro / Epi25 Browser)


Filter 3: Include predicted to be damaging (LOF + missense) variants by in-silico tool (CADD \geq 15)

Filter 4: Inspect for true variants using IGV

Final De-novo variants Output

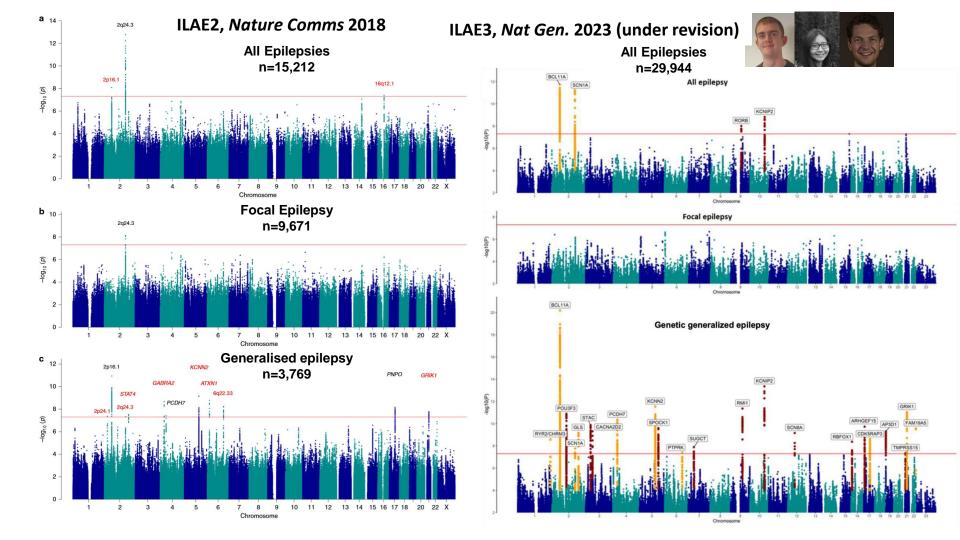

Gene-based burden test of LoF and damaging missense DNVs by DeNovoWEST

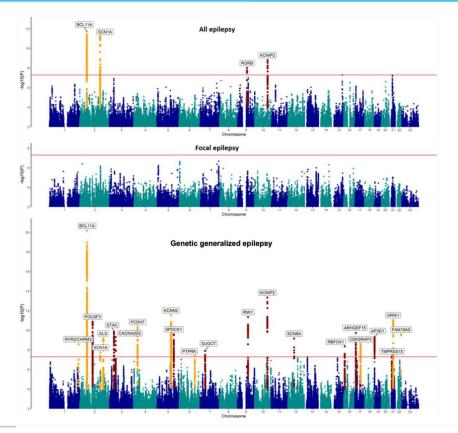
We identified 14 genes that reached exome-wide significance for enrichment of damaging DNVs

GWAS in the epilepsies – 'ILAE3' Study Design

Main Analyses		ILAE C
Focal	16,384	
Generalized	7,407	
All Epilepsies	29,944	
Controls	52,538	High Perf
Sub-analyses		
Childhood Absence Epilepsy	1,072	
Juvenile Absence Epilepsy	671	0
Juvenile Myoclonic Epilepsy	1,813	
Generalised Tonic-Clonic Seizure	es 499	
Focal Epilepsy, Lesion Negative	6,367	Ur
Focal Epilepsy, Hippocampal Sclerosis	1,375	
Focal Epilepsy, Other Lesion	4,661	

ILAE Consortium on Complex Epilepsies




Ini Lux

Epi25

Imputation: Sanger Imputation Server, Haplotype Reference Consortium (release 1.1), 4.9m SNPs **Association**: GLM (SAIGE)

Genome-wide meta-analysis of over 29,000 people with epilepsy ...

Nature Genetics, in revision – manus	cript on MedBioArchives
--------------------------------------	-------------------------

Phenotype	Locus	Novel / Replication	Lead SNP (A1:A2)	Freq1	Z-score	P-value	Gene	Total	Missense	TWAS	SMR	MAGMA	PoPS	Brain exp	brain-coX	KO mouse	AED target	Monogenic
	2p16.1	Replication	rs13032423 (A:G)	0.53	-7.04	1.85E-12	BCL11A	5										
All	2q24.3	Replication	rs59237858 (T:C)	0.23	-6.89	5.746E-12	SCN1A	8										
epilepsy	9q21.13	Novel	rs4744696 (A:G)	0.82	-5.74	9.694E-09	RORB	4										
	10q24.32	Novel	rs3740422 (C:G)	0.33	6.04	1.517E-09	KCNIP2	3										
	1q43	Replication	rs876793 (T:C)	0.67	-5.95	2.644E-09	RYR2 CHRM3	4										-
	2p16.1	Replication	rs11688767 (A:T)	0.53	9.38	6.58E-21	BCL11A	5										
	2q12.1	Novel	rs62151809 (T:C)	0.43	6.77	1.277E-11	POU3F3	3										
	2q24.3	Replication	rs11890028 (T:G)	0.72	5.63	1.728E-08	SCN1A	8										
	2q32.2	Replication	rs6721964 (A:G)	0.66	-6.18	6.542E-10	GLS	4										
	3p22.3	Novel	rs9861238 (A:G)	0.41	-6.42	1.333E-10	STAC	2										
	3p21.31	Novel	rs739431 (A:G)	0.84	6.23	4.822E-10	CACNA2D2	6										
	4p15.1	Replication	rs1463849 (A:G)	0.59	-6.59	4.377E-11	PCDH7	3										
	5q22.3	Replication	rs4596374 (T:C)	0.55	-6.98	2.906E-12	KCNN2	6										
	5q31.2	Novel	rs2905552 (C:G)	0.48	-6.33	2.492E-10	SPOCK1	5										
GGE	6q22.33	Replication	rs13219424 (T:C)	0.29	-5.49	3.872E-08	PTPRK	3										
	7p14.1	Novel	rs37276 (T:G)	0.26	-5.69	1.288E-08	SUGCT	2										
	9q21.32	Novel	rs2780103 (T:C)	0.26	-6.93	4.342E-12	RMI1	5										
	10q24.32	Novel	rs11191156 (A:G)	0.67	-7.55	4.409E-14	KCNIP2	4										
	12q13.13	Novel	rs4762030 (T:G)	0.02	6.17	6.90E-10	SCN8A	6										
	16p13.3	Novel	rs62014006 (T:G)	0.47	5.88	4.223E-09	RBFOX1	5										
	17p13.1	Novel	rs2585398 (A:C)	0.53	-6.37	1.842E-10	ARHGEF15	6										
	17q21.32	Replication	rs16955463 (T:G)	0.25	-5.97	2.3E-09	CDK5RAP3	4										
	19p13.3	Novel	rs75483641 (T:C)	0.14	-6.22	4.852E-10	AP3D1	5										
	21q21.1	Novel	rs1487946 (A:G)	0.59	5.47	4.409E-08	TMPRSS15	1										
	21q22.1	Replication	rs7277479 (A:G)	0.36	-6.82	8.935E-12	GRIK1	4										
	22q13.32	Novel	rs469999 (A:G)	0.31	-6.32	2.647E-10	FAM19A5	2										
CAE	2p16.1	Replication	rs12185644 (A:C)	0.70	-7.12	1.04E-12	BCL11A	5										
	4p12	Replication	rs17537141 (T:C)	0.85	-5.47	4.62E-08	GABRA2	6										
JME	8q23.1	Novel	rs3019359 (T:C)	0.41	-5.55	2.89E-08	RSPO2 TMEM74	3										-
	16p11.2	Replication	rs1046276 (T:C)	0.35	6.19	6.05E-10	STX1B CACNA1I	5										

Drug repurposing..

Drugs' relative ability to affect disease-protein function: Function Modulation (FM) score	Drugs' relative ability to affect disease-protein abundance Abundance Correction (AC) score
\downarrow	\downarrow
Premise A drug is more likely to affect a disease <i>if</i> it has a stronger affect on the function of proteins more strongly associated with the disease	Premise A drug is more likely to be effective for a disease <i>if</i> it is better able to correct abnormalities in protein abundance underlying the disease
	↓
Concept	Concept
If Drug D affects the function of three proteins <i>P</i> ₁ , <i>P</i> ₂ & <i>P</i> ₃ , the FM score for Drug D = { (strength of protein <i>P</i> ₁ 's association with the disease) × (strength of Drug D's effect on the function of protein <i>P</i> ₁) } derived from drug-target affinity data	The AC score for Drug D = { the (dis)similarity between changes in protein abundance underlying the Disease and changes in protein abundance caused by Drug D }
{ (strength of protein <i>P</i> ₂ 's association with the disease) × (strength of Drug D's effect on the function of protein <i>P</i> ₂) } + { (strength of protein <i>P</i> ₃ 's association with the disease) ×	The AC score ranges between +1 and −1, where +1 means that the disease-causing and drug-induced changes in protein abundance are exactly the same, and −1 means that they are diametrically opposite.

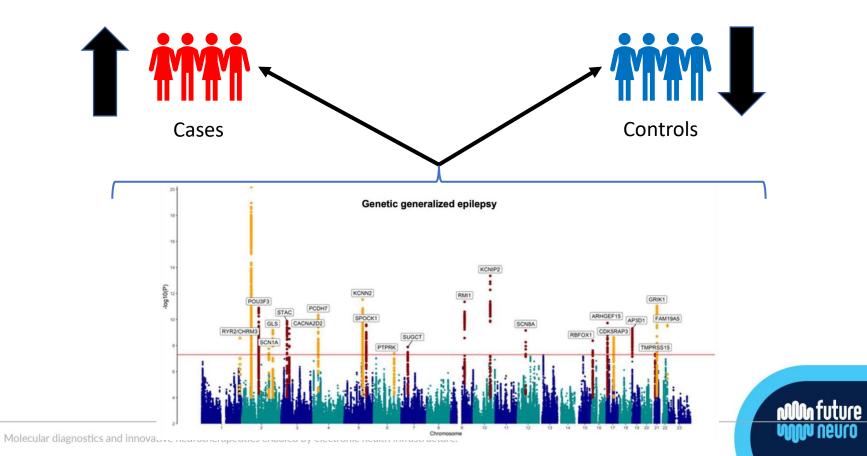
Function and Abundance Modulation (FAM) score

Method: Mirza et al, Brain Communications 2021

Molecular diagnostics and innovative neurotherapeutics enabled by electronic health infrastructure.

current ASMs ranked higher than expected by chance ($p < 1 \times 10^{-6}$)

For GGE, broad-spectrum ASMs more effective than narrow-spectrum antiseizure drugs ($p < 1 \times 10^{-6}$),



Application of PRS to the epilepsies

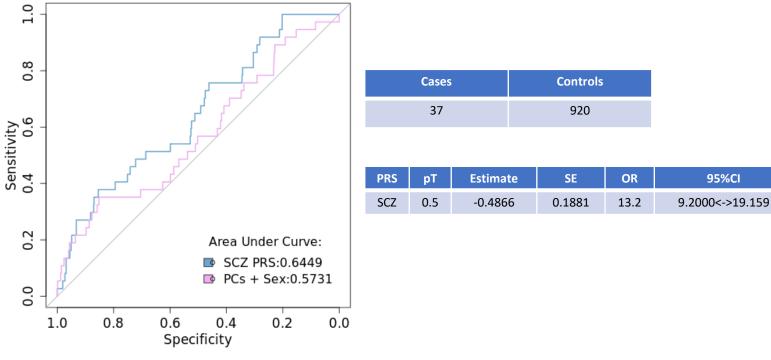
Polygenic risk scores (PRS) and the epilepsies

PRS as a predictor of LEV-induced psychosis

- **Hypothesis**: do people experiencing LEV-psychosis have higher PRS for schizophrenia than LEV tolerant individuals?
- Cases: LEV-treated, psychosis as a side-effect (n=37)
 - ADR within 6 months of commencing drug treatment
 - Led to a dose reduction or withdrawal of drug treatment
 - Symptoms stop after dose reduction / withdrawal
 - Not attributable to another cause (e.g. underlying psychiatric illness)
- **Controls**: LEV-treated, no side-effects (n=902)

PRS alleles for SCZ selected from: Ripke et al Nature 2014

LEV PRS


R2

0.04

Ρ

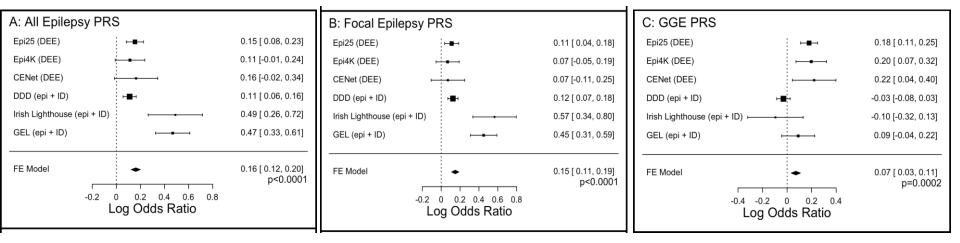
0.0059

Predicting LEV-psychosis Case:Control Status

Campbell et al, Epilepsia, 2022

Combining common & rare: Do cases of epileptic encephalopathy carry a genomic burden for epilepsy?

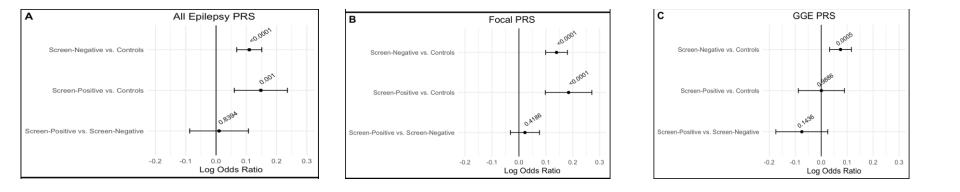
R	5	6	
16	-	1	


Cohort	Epilepsy	Screen-positive	Screen-negative	Controls	Phenotype	Data types	
Epi25	1,094	163	931	210	DEE	Microarray + exome	
Partner's Biobank	0	0	0	19,762	Controls only	Microarray	
Epi4K	266	44	77	0	DEEs	Microarray + exome	
QSkin	0	0	0	15,717	Controls only	Microarray	
CENet	171	40	86	0	DEE	WGS + microarray	
Canadian Controls	0	0	0	6,901	Controls only	Microarray	
DDD	897	152	745	0	Seizures + ID	Microarray + exome	
UK Biobank	0	0	0	400,835	Controls only	Microarray	
Irish Lighthouse	82	29	53	0	Epilepsy + ID	Exome (trios) + microarray (probands)	
Irish Controls	0	0	0	2,404	Controls only	Microarray	
Genomics England	249	32	217	1,931	Epilepsy + ID and controls	WGS	
Total	2,759	460	2,109	447,760			

NUN NEURO

Cambell et al, ebiomedicine, 2022 senabled by electronic health infrastructure.

Epilepsy-related PRS in the epileptic encephalopathies



Cambell et al, *ebiomedicine*, 2022 s enabled by electronic health infrastructure.

If we stratify by screen +ive vs -ive..

Cambell et al, ebiomedicine, 2022 senabled by electronic health infrastructure.

Conclusions

- Pathogenic variants in hundreds of genes can cause monogenic epilepsies
 - Yield depends on epilepsy type (DEE = 30-40%)
 - Some diagnosis will have treatment implications..
- Rare variant and GWAS studies are delineating genetic architecture & pointing to drug targets
 - There is genetic continuity between common and rare forms of epilepsy.
 - "Monogenic" forms appear to have a polygenic component..

Acknowledgements...

Helena Martins, Anne Feng, Colin Ellis, Simon Gerard

This presentation has emanated from research supported in part by a research grant from Science Foundation Ireland (SFI) under Grant Number 16/RC/3948 and co-funded under the European Regional Development Fund and by FutureNeuro industry partners

Marie Sklodowska-Curie COFUND: Pre-notification of call NeuroInsight - Advanced Skills for Data Analytics in Neurological Diseases

Call 3 for proposals opens 1st August 2023 and will close on 31 October 2023

- 2 year Postdoctoral Fellowships (Marie Sklodowska-Curie), part-funded by Science Foundation Ireland
- Based in one of 8 Irish universities
- 16 positions available! (50+ supervisors to choose from)
- Opportunity for industry/clinical placements
- Comprehensive training and career development programme
- Proposals invited across four domains:

Expressions of interest to: <u>neuroinsight@rcsi.ie</u> <u>www.neuroinsight.eu</u> @neuroinsightEU

This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 101034252